
Journal of Statistical Planning and
Inference 91 (2000) 365–376

www.elsevier.com/locate/jspi

Testing for changes in the mean or variance of a stochastic
process under weak invariance(

Lajos Horv�atha ; ∗, Josef Steinebachb
aDepartment of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City,

UT 84112-0090 USA
bPhilipps-Universit�at, D-35032 Marburg, Germany

Abstract

Asymptotic CUSUM tests are derived for detecting changes in the mean or variance of a
stochastic process for which a weak invariance principle is available. Conditions for the consis-
tency of these tests are also discussed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Testing for a change in the mean and/or the variance of a sequence of observa-
tions is one of the most important problems in change-point analysis. For a recent
comprehensive survey we refer to Cs�orgő and Horv�ath (1997). In particular, cases of
dependent observations have drawn increasing attention in the literature (cf. e.g. Bai,
1994; Davis et al., 1995; Giraitis and Leipus, 1992; Horv�ath, 1993, 1997; Horv�ath and
Kokoszka, 1997; Horv�ath et al., 1998; Kokoszka and Leipus, 1997; Kulperger, 1985;
and Picard, 1985).
One of the key tools in change-point analysis is to make use of a weak (or strong)

invariance principle for the observed sequence and to develop an asymptotic test based
on certain properties of the approximating process. The main aim of this paper is
to pursue the latter idea in the following general model. Assume that we observe a
stochastic process {Z(t): 06t¡∞} having the following structure:

Z(t) =
{
at + bY (t); 06t6T ∗;
Z(T ∗) + a∗(t − T ∗) + b∗Y ∗(t − T ∗); T ∗¡t6T;

(1.1)
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where a; b; a∗; b∗ and T ∗ are unknown parameters, {Y (t); 06t¡∞} and {Y ∗(t);
06t¡∞} are unobservable stochastic processes satisfying a weak invariance prin-
ciple. Namely, we assume that for any T¿0 there are independent Wiener processes
{WT (t); 06t6T ∗} and {W ∗

T (t); 06t6T − T ∗} such that

sup
06t6T∗

|Y (t)−WT (t)|=OP(T�) (T → ∞) (1.2)

and

sup
06t6T−T∗

|Y ∗(t)−W ∗
T (t)|=OP(T�) (T → ∞) (1.3)

with some �¡1=2. On observing {Z(t); 06t6T} we wish to test possible changes in
the mean drift or variance of the process on [0; T ].
First we assume that a 6= a∗. In Section 2 we develop a CUSUM procedure for

testing the null hypothesis

H0: T ∗ = T (no change in the mean over [0; T ])

against the alternative

HmA : 0¡T
∗¡T and a 6= a∗ (change in the mean at T ∗∈(0; T )):

Theorem 2.1 gives the limit distribution of the CUSUM statistic allowing us to �nd
asymptotic critical values. An estimator for the variance will also be discussed.
In Section 3 we consider the case when b 6= b∗. Similar to the detection of a possible

change in the drift, an asymptotic test will be derived for testing H0 against

HvA: 0¡T
∗¡T and b 6= b∗ (change in the variance at T ∗∈(0; T )):

It turns out that, for the asymptotic test, it does not make any di�erence whether the
mean drift is assumed to be known or not.
Before we state our main results we discuss some statistical models where conditions

(1.1)–(1.3) are satis�ed.

Example 1.1 (Partial sums). Let {Xi; 16i¡∞} and {X ∗
i ; 16i¡∞} be two inde-

pendent sequences of independent identically distributed random variables with EX1=�;
var X1 = �2¿0; EX ∗

1 = �
∗ and varX ∗

1 = �
∗2¿0. Consider Z(t)= S[t], where S0 = 0 and

Sk =
{
X1 + X2 + · · ·+ Xk if 16k6T ∗;
S[T∗] + X ∗

1 + · · ·+ Xk−[T∗] if T ∗¡k6T:
(1.4)

If E|X1|2+�¡∞ and E|X ∗
1 |2+�¡∞ with some �¿0; then Koml�os et al. (1975) yields

(1.1)–(1.3) with a = �; b = �; Y (t) = (Z(t) − �t)=�; a∗ = �∗; b∗ = �∗; Y ∗(t − T ∗)
=(Z(t)−Z(T ∗)−�∗(t−T ∗))=�∗. Here the Wiener processes WT and W ∗

T are constructed
to the partial sums of {X1; : : : ; X[T∗]} and {X ∗

1 ; : : : ; X
∗
[T ]−[T∗]}, respectively, each with

approximation rate OP(T 1=(2+�)); i.e. �= 1=(2 + �).
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Example 1.2 (Renewal processes). The random variables {Xi; 16i¡∞} and {X ∗
i ;

16i¡∞} are de�ned in Example 1.1. In addition to satisfying the conditions in
Example 1.1 we assume that �¿0 and �∗¿0. Let

Z(t) =
{
N1(t) if 06t6T ∗;
N1(T ∗) + N2(t − T ∗) if T ∗¡t¡∞; (1.5)

where

N1(t) = min

{
k¿1:

∑
16i6k

Xi¿t

}
− 1; 06t¡∞

and

N2(t) = min

{
k¿1:

∑
16i6k

X ∗
i ¿t

}
− 1; 06t¡∞:

If a=1=�; b=(�2=�3)1=2; a∗=1=�∗ and b∗=(�∗2=�∗3)1=2, then by Cs�orgő et al. (1987)
(cf. also Cs�orgő and Horv�ath, 1993; Steinebach, 1994) we have the approximations in
(1.2) and (1.3) for Y (t)=(N1(t)−at)=b and Y ∗(t)=(N2(t)−a∗t)=b∗ with �=1=(2+�)
again.

Example 1.3 (Dependent observations). Following Example 1.1 we assume that
Z(t) = S[t]; where Sk is de�ned in (1.4). However, the independence of X1; X2; : : : ;X ∗

1 ;
X ∗
2 ; : : : is not assumed anymore. Namely, Xi=�+�ei; 16i6T

∗ and X ∗
i =�

∗+�∗e[T∗]+i ;
16i6T − [T ∗]. We assume only that there is a Wiener process {W (t); 06t¡∞}
such that∣∣∣∣∣ ∑

16i6k
ei − �W (k)

∣∣∣∣∣ a:s:= O(k�); as k → ∞ (1.6)

with some �¡ 1
2 and �¿0. Such approximations have been derived for weak Bernoulli

processes (cf. Eberlein, 1983), martingales and their generalizations (cf. Eberlein, 1986a,
b), �- and �-mixing sequences, general Gaussian sequences and others (cf. Philipp,
1986 for a comprehensive review). Now (1.6) implies that (1.2) and (1.3) hold for
Y (t)= (Z(t)−�t)=b and Y ∗(t−T ∗)= (Z(t)−Z(T ∗)−�∗(t−T ∗))=b∗ with b=�� and
b∗ = �∗�.

Example 1.4 (Linear processes). Motivated by change-point detection in time series,
the following special case of Example 1.3 received special attention (cf. Antoch et al.,
1997; Bai, 1994; Horv�ath, 1997). We assume that the sequence in Example 1.3 is a
linear process, i.e.

ei =
∑

06j¡∞
aj�i−j; 16i¡∞;

where {�i; 16i¡∞} is a sequence of independent identically distributed random vari-
ables with E�i = 0; E�2i = 1 and E|�i|2+�¡∞ with some �¿0. If �1 has a smooth
density and {ak ; 06k¡∞} satis�es some regularity conditions, then (1.6) holds. For
details and exact conditions we refer to Lemmas 2:1 and 2:2 in Horv�ath (1997).
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Example 1.5 (Nonlinear time series). ARCH-type models were introduced by Engle
(1982) and they have become one of the most popular and extensively studied �nancial
econometric models. The stationary solutions of the equations de�ning these models
are typically Markovian, aperiodic, ergodic and �-mixing with geometrically decreasing
mixing coe�cients (cf. Bhattacharya and Lee, 1995; Diebolt and Gu�egan, 1993, 1994;
Diebolt and La��b, 1995 and TjHstheim, 1990). For further discussion and examples we
refer to Lu and Cheng (1997). These properties are su�cient to have an invariance
principle like (1.6) and therefore we also have (1.1)–(1.3) in these models.

2. Testing for a change in the drift

We assume that we have observed {Z(t); 06t6T} at ti= ti;N = iT=N; 16i6N . Let
Z0 = 0; Zi = Z(ti); Ri = Zi − Zi−1; 16i6N and Z∗

0 = 0,

Z∗
k =

∑
16i6k

Ri − k
N

∑
16i6N

Ri; 16k6N:

Note that, in view of (1.1)–(1.3), the Ri roughly behave like independent normal
N (aT=N; b2T=N ); 16i6NT ∗=T , respectively N (a∗T=N; b∗2T=N ); NT ∗=T¡i6N , ran-
dom variables. Taking this into account it will turn out that the change analysis for
the mean drift can essentially be pursued under the normal distribution.
First we study the limit properties of

MT = (Tb2)−1=2 max
16k6N

|Z∗
k | (2.1)

as T → ∞ with b from (1.1).

Theorem 2.1. We assume that (1:1)–(1:3) hold and N = N (T ) → ∞; as T → ∞.
Then under H0 we have

MT
D→ sup
06t61

|B(T )|; T → ∞; (2.2)

with {B(t); 06t61} denoting a Brownian bridge.

Proof. On observing that under H0

Z∗
k = Z

(
kT
N

)
− k
N
Z(T )

= a
kT
N
+ bY

(
kT
N

)
− k
N
{aT + bY (T )};

assumption (1.2) yields that

max
16k6N

∣∣∣∣Z∗
k − b

{
WT

(
kT
N

)
− k
N
WT (T )

}∣∣∣∣=OP(T�);
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as T → ∞. By the scale transformation of the Wiener process we have{
T−1=2

(
WT

(
[xN ]
N
T
)
− [xN ]

N
WT (T )

)
; 06x61

}
D=
{
WT

(
[xN ]
N

)
− [xN ]

N
WT (1); 06x61

}
;

and therefore the almost sure continuity of WT (u) gives

sup
06x61

∣∣(Tb2)−1=2Z∗
[Nx] − T−1=2(WT (xT )− xWT (T ))

∣∣
=OP(T�−1=2) + sup

06x61

∣∣∣∣T−1=2
(
WT

(
[xN ]
N
T
)
− [xN ]

N
WT (T )

)

−T−1=2(WT (xT )− xWT (T ))
∣∣∣∣

=oP(1);

which completes the proof of Theorem 2.1.

For practical use of Theorem 2.1, we have to replace b2 in (2.1) with a consistent
estimator. We choose

b̂
2
T =

1
T

∑
16i6N

(
Ri − T

N
âT

)2
(2.3)

to estimate b2, where

âT =
1
T

∑
16i6N

Ri:

Let

M̂T = (T b̂
2
T )

−1=2 max
16k6N

|Z∗
k |:

Theorem 2.2. We assume that (1:1)–(1:3) hold; N = N (T ) → ∞ and N = o(T 1−2�)
as T → ∞. Then under H0 we have

M̂T
D→ sup
06t61

|B(t)|; T → ∞; (2.4)

with {B(t); 06t61} denoting a Brownian bridge.

Proof. It is enough to show that

b̂
2
T
P→ b2; T → ∞: (2.5)
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First we note that under H0, assumptions (1.1)–(1.3) together with the normal distri-
bution of T−1=2WT (T ) yield

âT =
1
T

∑
16i6N

Ri =
Z(T )
T

= a+ b
Y (T )
T

= a+ b
WT (T )
T

+OP(T�−1)

= a+OP(T−1=2): (2.6)

We can assume, without loss of generality, that a= 0. Applying (2.6) we get

b̂
2
T =

1
T

( ∑
16i6N

R2i −
T 2

N
â2T

)

=
1
T

∑
16i6N

R2i + oP(1):

Set Wi=b{WT (iT=N )−WT ((i−1)T=N )} and �i=Ri−Wi; 16i6N . Assumption (1.2)
implies that

max
16i6N

|�i|=OP(T�):

Hence
1
T

∑
16i6N

R2i =
1
T

∑
16i6N

(Wi + �i)2

=
1
T

∑
16i6N

W 2
i +

2
T

∑
16i6N

�iWi +
1
T

∑
16i6N

�2i

=
1
T

∑
16i6N

W 2
i +

2
T

∑
16i6N

�iWi +OP(NT 2�−1):

Since (N=T )1=2Wi; 16i6N , are independent, identically distributed normal N(0; b2)
random variables, by Markov’s inequality we have∑

16i6N
|Wi|=OP((NT )1=2)

and the central limit theorem gives

1
T

∑
16i6N

W 2
i − b2 = 1

N
∑

16i6N

(
N
T
W 2
i − b2

)
=OP(N−1=2):

Thus, we get

1
T

∑
16i6N

R2i = b
2 + OP(N−1=2) + OP(T�−1=2N 1=2) + OP(NT 2�−1)

= b2 + oP(1);

which yields (2.5).
Next, we discuss the behavior of the test statistic M̂T , as T → ∞, under the alter-

native HmA .



L. Horv�ath, J. Steinebach / Journal of Statistical Planning and Inference 91 (2000) 365–376 371

Theorem 2.3. We assume that (1:1)–(1:3) hold; N =N (T )→ ∞; N =o(T 1−2�); and
|a− a∗|N 1=2T ∗(T − T ∗)

T 2
→ ∞; (2.7)

then under HmA we have that

M̂T
P→∞: (2.8)

Remark 2.1. We note that no assumption is made on b and b∗ in Theorem 2.3. This
means that we always have consistency regardless if the variance changes or not.
The same observation was made by Gombay et al. (1996) in case of independent
observations.

Proof. Setting k∗ = [NT ∗=T ], by (1.2) and (1.3) we have

Z∗
k∗ = Z

(
k∗T
N

)
− k∗

N
{Z(T ∗) + (Z(T )− Z(T ∗))}

= (a− a∗)k
∗

N
(T − T ∗) + b

{
WT

(
k∗T
N

)
− k∗

N
WT (T ∗)

}

− b∗ k
∗

N
W ∗
T (T − T ∗) + OP(T�):

Since the distribution of T−1=2 sup06x61 |WT (Tx)| does not depend on T , we get that

Z∗
k∗ = (a− a∗)

k∗

N
(T − T ∗) + OP(T 1=2): (2.9)

If
|a− a∗|T ∗(T − T ∗)

T 3=2
→ ∞; T → ∞; (2.10)

then by (2.9) we have

Z∗
[NT∗=T ]

/{
(a− a∗)
T

T ∗(T − T ∗)
}

P→ 1: (2.11)

Since �¡ 1
2 , we obtain

âT =
Z(T )
T

=
Z(T ∗)
T

+
Z(T )− Z(T ∗)

T

= a
T ∗

T
+ a∗

T − T ∗

T
+ b

WT (T ∗)
T

+ b∗
W ∗
T (T − T ∗)
T

+OP(T�−1)

= O(1) + OP(T−1=2) + OP(T�−1)

= OP(1): (2.12)

Using (2.12) we get

b̂
2
T =

1
T

( ∑
16i6N

R2i −
T 2

N
â2T

)

=
1
T

∑
16i6N

R2i +OP

(
T
N

)
:
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Next, we write∑
16i6N

R2i =
∑

16i6k∗
R2i +

∑
k∗¡i6N

R2i

=
∑

16i6k∗

(
a
T
N
+Wi + �i

)2
+

∑
k∗¡i6N

(
a∗
T
N
+W ∗

i + �
∗
i

)
;

where Wi = b{WT (iT=N ) − WT ((i − 1)T=N )}, �i = Ri − Wi − aT=N; 16i6k∗ and
W ∗
i =b

∗{W ∗
T (iT=N −T ∗)−W ∗

T ((i−1)T=N −T ∗)}, �∗i =Ri−W ∗
i −a∗T=N . By (1.2) and

(1.3) we have

max
16i6k∗

|�i|=OP(T�) and max
k∗¡i6N

|�∗i |=OP(T�)

and, therefore,∑
16i6k∗

�2i =OP(k
∗T 2�) and

∑
k∗¡i6N

�∗2i =OP((N − k∗)T 2�):

Since (N=(b2T ))1=2Wi and (N=(b∗2T ))1=2W ∗
i are independent, standard normal random

variables we get∑
16i6k∗

W 2
i =OP(b

2Tk∗=N ) and
∑

k∗¡i6N
W ∗2
i =OP((N − k∗)b∗2T=N ):

Hence,

b̂
2
T = a

2 T
∗

N
(1 + oP(1)) + a∗2

T − T ∗

N
(1 + oP(1)) + OP

(
T
N

)
=OP

(
T
N

)
:

Combining (2.11) and condition (2.7) we immediately obtain (2.8).

For example, if we assume that T ∗ = [T�] with some 0¡�¡1, then the conditions
of Theorem 2.3 are satis�ed, if N→∞; N =o(T 1−2�) and |a−a∗|N 1=2→∞, as T→∞.

3. Testing for a change in the variance

Our test is based on the partial sums of R̃
2
i = (Zi − Zi−1 − aT=N )2; 16i6N , where

Z0; Z1; : : : ; ZN are de�ned in Section 2. Let Z̃0 = 0 and

Z̃k =
∑

16i6k
R̃
2
i −

k
N

∑
16i6N

R̃
2
i ; 16k6N:

Similarly to Chapter 2, the R̃
2
i here are roughly independent (b

2T=N )�21 ; 16i6NT
∗=T ,

respectively (b∗2T=N )�21 ; NT
∗=T¡i6N , random variables, and the change analysis for

the variance will essentially be based on this asymptotic chi-square situation.
First, we study the asymptotic properties of

M̃ T =
N 1=2

21=2b2T
max
16k6N

|Z̃k |:

We note that a and b are the drift and variance terms in (1.1) under H0.
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Theorem 3.1. We assume that (1:1)–(1:3) hold; N = N (T )→ ∞ and N = o(T 1=2−�)
as T → ∞. Then under H0 we have

M̃ T
D→ sup

06t61
|B(t)|; T → ∞; (3.1)

with {B(t); 06t61} denoting a Brownian bridge.

Proof. Let �i=(N=T )1=2(WT (iT=N )−WT ((i− 1)T=N )); 16i6N . It is easy to see that
�1; �2; : : : are independent, standard normal random variables. Using (1.2) we get that

R̃
2
i = b

2 T
N
{�i + �i}2

and

max
16i6N

|�i|=OP(N 1=2T�−1=2):
Hence by the law of large numbers we have

max
16k6N

∣∣∣∣∣ ∑
16i6k

(
R̃
2
i − b2

T
N

)
− b2 T

N
∑

16i6k
(�2i − 1)

∣∣∣∣∣
=OP(N 1=2T�+1=2) + OP(T 2�N ): (3.2)

Since �21 − 1; �22 − 1; : : : are independent identically distributed random variables with
E(�21− 1)=0, var(�21− 1)=2 and a �nite moment generating function, by the Koml�os
et al. (1976) strong approximation we can de�ne a Wiener process {W̃ (t); 06t¡∞}
such that

max
16k6N

∣∣∣∣∣ ∑
16i6k

(�2i − 1)− 21=2W̃ (k)
∣∣∣∣∣ a:s:= O(logN ): (3.3)

Putting together (3.2) and (3.3) we conclude

max
16k6N

∣∣∣∣ N 1=2

21=2b2T
Z̃k − N−1=2

(
W̃ (k)− k

N
W̃ (N )

)∣∣∣∣
=OP(N−1=2 logN ) + OP(NT�−1=2) + OP(N−1=2(NT�−1=2)2)

=oP(1):

It is easy to check that B̃N (t)=N−1=2(W̃ (Nt)− tW̃ (N )) is a Brownian bridge for each
N . By the continuity of B̃N (t) we have

max
16k6N

sup
(k−1)=N6t6k=N

∣∣∣∣B̃N (t)− B̃N
(
k
N

)∣∣∣∣= oP(1);
which also completes the proof of (3.1).

For practical use of the statistic M̃T , we have to replace a and b2 with suitable
estimators again. We recall the estimators

âT =
1
T

∑
16i6N

Ri



374 L. Horv�ath, J. Steinebach / Journal of Statistical Planning and Inference 91 (2000) 365–376

and

b̂
2
T =

1
T

∑
16i6N

(
Ri − T

N
âT

)2
:

From Section 2. Let R̂
2
i = (Zi − Zi−1 − âT T=N )2; 16i6N and

Ẑk =
∑

16i6k
R̂
2
i −

k
N

∑
16i6N

R̂
2
i ; 16k6N:

Next, we obtain the limit distribution of

M̃
∗
T =

N 1=2

21=2T b̂
2
T

max
16k6N

|Ẑk |

under H0.

Theorem 3.2. We assume that (1:1)–(1:3) hold; N =N (T )→ ∞ and N = o(T 1=2−�);
as T → ∞. Then under H0 we have

M̃
∗
T

D→ sup
06t61

|B(t)|; T → ∞; (3.4)

with {B(t); 06t61} denoting a Brownian bridge.

Proof. By (2.6) we have

âT − a=OP(T−1=2): (3.5)

Next, we note that∑
16i6k

(R̃
2
i − R̂

2
i ) =

∑
16i6k

T
N
(âT − a)

(
2(Zi − Zi−1) + T

N
(âT + a)

)

= 2
T
N
(âT − a)Z

(
kT
N

)
− k

(
T
N

)2
(âT − a)(âT + a);

and therefore Theorem 2.1 and (3.5) imply that

N 1=2

T
max
16k6N

|Z̃k − Ẑk |6 2N 1=2

T
max
16k6N

∣∣∣∣∣ ∑
16i6k

(R̃
2
i − R̂

2
i )

∣∣∣∣∣
= OP(N−1=2) = oP(1): (3.6)

Using (2.5), we immediately obtain (3.4) from (3.6) and Theorem 3.1.

Finally, we discuss the behavior of M̃
∗
T under H

v
A.

Theorem 3.3. We assume that (1:1)–(1:3) hold; a=a∗; N=N (T )→ ∞; NT ∗=T → ∞;
N (T − T ∗)=T → ∞; N = o(T 1=2−�); and

N 1=2T ∗(T − T ∗)|b2 − b∗2|=T 2 → ∞
as T → ∞. Then under HvA we have

M̃
∗
T
P→∞; T → ∞: (3.7)
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Proof. First we note that since a∗=a, (3.5) holds under HvA. Again, with k
∗=[NT ∗=T ],

similarly to the proof of Theorem 3.2 we have

N 1=2

T
|Ẑk∗ |=OP(1) + |b2 − b∗2|k∗

N 3=2
∑

k∗¡i6N
N̂
2
i (1 + oP(1));

where N̂ 1; N̂ 2; : : : are independent, standard normal random variables. Hence by the law
of large numbers we conclude

N 1=2

T
|Ẑk∗ |= |b2 − b∗2|k∗(N − k∗)

N 3=2
(1 + oP(1)): (3.8)

Moreover,

b̂
2
T =

1
T

∑
16i6N

(
Zi − Zi−1 − âT TN

)2

=
1
T

∑
16i6N

(
Zi − Zi−1 − a TN

)2
− T
N
(âT − a)2

=
(
b2
k∗

N
+ b∗2

N − k∗
N

)
(1 + oP(1));

and therefore (3.7) follows from (3.8).

For example, if we assume that T ∗ = [T�] with some 0¡�¡1, su�cient conditions
for Theorem 3.3 are N = N (T )→ ∞; N = o(T 1=2−�), and N 1=2|b2 − b∗2| → ∞.
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